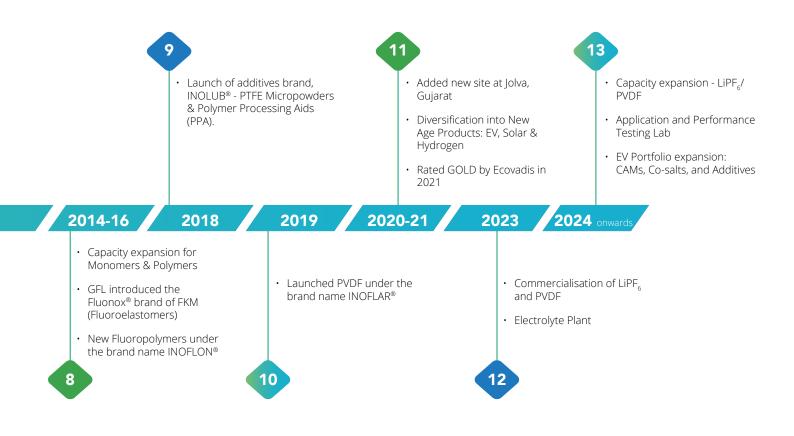
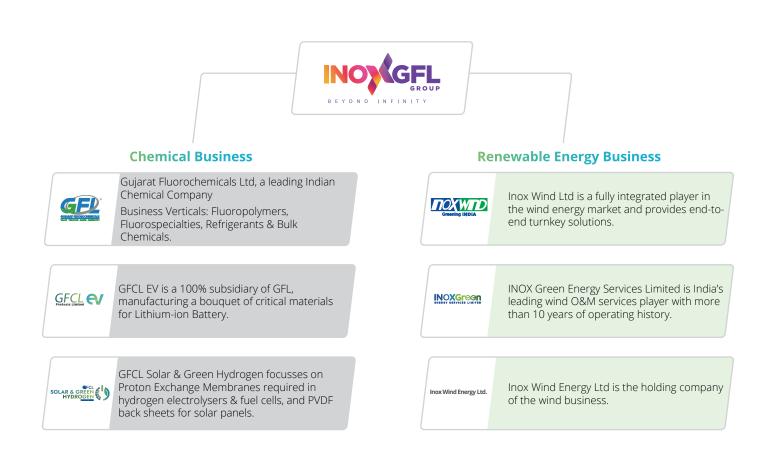

Advancing EV Battery Materials Solutions Globally



GROUP'S JOURNEY


2

ABOUT THE INOXGFL GROUP

The INOXGFL Group proudly stands as one of India's most esteemed business conglomerates, with a rich history spanning over a century. The group has resiliently grown into a multibillion-dollar enterprise with diverse verticals including Refrigerants, Fluoropolymers, Specialty Chemicals, Wind Energy, and Renewables.

4

MANUFACTURING LOCATIONS

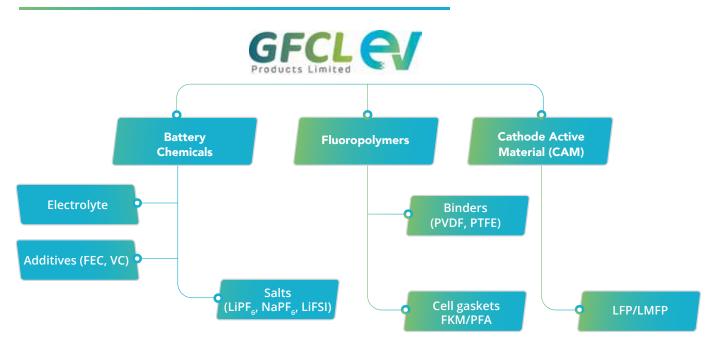
DAHEJ, GUJARAT, INDIA

Fluoropolymers, Fluoroelastomers & Chemicals

RANJIT NAGAR, GUJARAT, INDIA

Fluorospecialities & Refrigerants

JOLVA, GUJARAT, INDIA


Battery Chemicals Manufacturing Plants

JT HILLS, MOROCCO

Fluorspar Mining & Beneficiation

GFCL EV – PRODUCT PORTFOLIO

• PTFE for Dry Electrode process and PFA for cell gaskets offered by parent company Gujarat Fluorochemicals Limited

Strong Value Proposition

- Widest portfolio of Lithium Ion Battery (LiB) chemicals covering >50% of a cell manufacturer's Bill of Materials
- Backward integration to natural minerals ensuring reliability & consistent supplies:
 - o In-house AHF production for Fluoropolymers and Electrolyte salts
 - o In-house FePO₄ production planned for LFP
 - o Multiple monomer (TFE & VDF) plants for uninterrupted Fluoropolymer production
- Backward integration into Fluorspar mines secures supply of critical raw material
- Secured supply chain for other important raw materials leading to cost competitiveness
- In-house technology and large supporting infrastructure allowing for quick scale-up
- Strong legacy of Fluorine-based chemistries: critical capability for several LiB chemicals/materials.
- Sustainable and responsible manufacturing by use of non-Fluorinated polymerisation aids
- All products are in compliance to US IRA requirements
- USD 725 million investment committed over the next 4-5 years, for Battery Chemicals business including expansion of capacities.
- One of the top non-Chinese LiB materials suppliers with strong interest from large customers
- A capable leadership team with decades of experience across specialty chemicals domain

BATTERY CHEMICALS

Lithium Hexafluorophosphate (LiPF₆)

- Lithium Hexafluorophosphate (LiPF_c) is the conventional salt used to produce electrolytes for Lithium-ion Batteries (LiBs).
- LiPF₆-based electrolyte is suitable for all LiB chemistries such as LCO, LMO, NMC, NCA, LFP & LMFP that are used in applications like 3C digital devices and power tools, Electric Vehicles & Energy Storage Systems.
- GFCL EV offers LiPF₆ salt with good solubility, high purity and a higher degree of ion dissociation.

Chemical Name	Lithium Hexafluorophosphate
CAS Number	21324-40-3
Chemical Formula	LiPF ₆
Structural Formula	$\boldsymbol{U}^{*} = \left[\begin{array}{c} \boldsymbol{F}_{n} \boldsymbol{F}_{n} \boldsymbol{F}_{n} \boldsymbol{F}_{n} \\ \boldsymbol{F}^{*} \boldsymbol{F}_{n} \boldsymbol{F}_{n} \end{array} \right]^{*}$
Molecular Weight	151.9
Appearance	Powder
Color	White
Density (g/cm³)	1.5
Solubility	Soluble
Flash Point (°C)	25
Melting Point (°C)	200

Lithium Bis (fluorosulfonyl) Imide (LiFSI)

- Lithium Bis (fluorosulfonyl) Imide (LiFSI) is a white powder with high Lithium-ion conductivity.
- It has high chemical stability, thermal stability, hydrolytic stability, excellent low temperature performance, and environmental friendliness.
- It is considered an important electrolyte material in new energy materials such as lithium-ion batteries.
- LiFSI has higher conductivity and higher Li ion transference number than LiPF₆. It also shows better cycling performance and less Li plating after repeated fast charging cycles.
- Solid Electrolyte Interphase (SEI) formation in LiFSI is more homogeneous, flexible and with a lower resistivity compared to the SEI formed in LiPF₆.
- LiFSI has better compatibility with Silicon-based anodes.

Chemical Name	Lithium Bis (fluorosulfonyl) Imide
CAS Number	171611-11-3
Chemical Formula	LiFSI
Molecular Formula	F ₂ LiNO ₄ S ₂
Structural Formula	0 0 F-S-N-0-F 0 Li 0
Molecular Weight	187.07
Appearance	Powder
Color	White
Density (g/cm ³)	1.052
Solubility	Soluble
Melting Point (°C)	140

Sodium Hexafluorophosphate (NaPF₆)

- Sodium Hexafluorophosphate (NaPF₆) is the salt used to produce electrolytes for Sodium-ion batteries (SiBs).
- SiBs represent a promising alternative to Li-ion systems.
- NaPF₆ also offers good solubility, high purity and a higher degree of ion dissociation, is suitable for various Sodium cell chemistries and can be used in EV and ESS applicants.

Chemical Name	Sodium Hexafluorophosphate
CAS Number	21324-39-0
Chemical Formula	NaPF ₆
Structural Formula	Na* Free Free F
Molecular Weight	167.95
Appearance	Powder
Color	White
Density (g/cm³)	2.4
Solubility	Soluble
Melting Point (°C)	200

Electrolyte Formulations

- Electrolyte formulations for LiBs and SiBs.
- Liquid electrolytes in LiBs and SiBs consist of salts, such as LiPF₆ and NaPF₆ in organic solvents.
- A liquid electrolyte acts as a conductive pathway for the movement of cations passing from the negative to the positive electrodes during discharge.
- GFCL EV offers various electrolyte formulations for Lithium and Sodium-ion batteries which allow ionic conduction over large temperature range, stabilise cathode and anode surfaces, extend battery lifespan, and improve cell performances and safety.
- Focussed on helping battery manufacturers commercialise ambitious new energy storage technologies.

Additives: Fluoroethylene Carbonate (FEC)

- Fluoroethylene Carbonate (FEC) is also a commonly used SEI formation additive, which is particularly used in the electrolytes of NMC batteries.
- FEC as an electrolyte additive can significantly alter the solvation structure, electrolyte reduction leading to enhanced electrochemical performance.
- FEC offers a simple and economical strategy to develop high-performance Lithium metal batteries in electrolytes.

Chemical Name	Eluprosthulano Carbonato
	Fluoroethylene Carbonate
Other Name	4-Fluoro-1,3-dioxolan-2-one
CAS Number	114435-02-8
Chemical Formula	C ₃ H ₃ FO ₃
Structural Formula	¢Ç,
Molecular Weight	106.05
Appearance	Liquid
Color	Colorless
Density (g/cm³)	1.45
Boiling Point (°C)	212
Flash Point (°C)	102
Melting Point (°C)	18-23

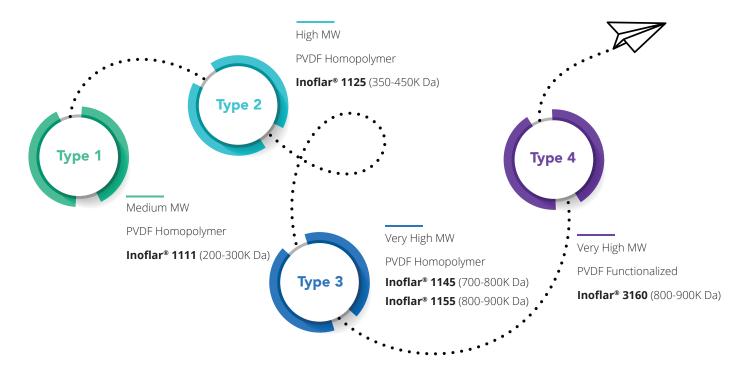
Additives: Vinylene Carbonate (VC)

- Vinylene Carbonate (VC) is the most popular electrolyte additive used in Li-ion batteries, which helps to achieve excellent characteristics such as high energy density, long cycle life, high-rate performance, high safety, and is an essential part of Lithium battery electrolyte.
- Vinylene Carbonate (VC) is used in electrolytes of all types of battery chemistries.

Chemical Name	Vinylene Carbonate
Other Name	1,3-dioxol-2-one
CAS Number	872-36-6
Chemical Formula	C ₃ H ₂ O ₃
Structural Formula	L.
Molecular Weight	86.05
Appearance	Liquid
Colour	Colourless or Light Yellow
Density (g/cm ³)	1.355
Boiling Point (°C)	178
Flash Point (°C)	73
Melting Point (°C)	22

FLUOROPOLYMERS

Inoflar[®] PVDF Binders


Portfolio to suit different cell chemistries

- LFP, LMFP, LCO, NMC
- Wet & Dry Cathode

Focus on

- Low gelation
- Good dispersibility
- High adhesion

10

*Molecular weight data are obtained by Gel Permeation Chromatography in Dimethylacetamide (DMAC), calibrated using PMMA standards useful for a relative comparison.

INOFLON® PTFE FOR DRY ELECTRODE PROCESS

- Polymerized with emulsion polymerization technology for higher fibrillation characteristics
- Fibrillation facilitates binding of active material and provides required cohesion/adhesion
- PTFE allows substitution of solvent NMP (N-methyl-2-Pyrrolidone) used in conventional wet coating technology

INOFLON® PTFE FINE POWDER PORTFOLIO

INOFLON® PTFE Grade	SSG	Particle size (d ₅₀) (µm)	Salient Features
FP7040EX	2.175	525	Produced using NFPA*
FP7040EXW	2.175	525	Produced using NFPA*
			Chemically stabilised for use as binder
GN7003	2.155	525	Very high molecular weight for better fibrillation
GN7150	2.175	525	Chemically stabilised for use as binder
GN7300	2.175	450	Chemically stabilised for use as binder

* Non-Fluorinated Polymerization Aids

SEALING SOLUTIONS

- Gaskets are used to electrically insulate the positive and negative terminal and provide sealing to ensure air and moisture from passing through the battery container.
- The gasket is present in a location exposed to the cell's internal and external environment.
- These gaskets are terminal can insulators and come into direct contact with the electrolyte. Hence, the gaskets must be chemically stable with electrolytes and resist creeping pressure. These are comprised of PFA/FKM material.

 Inoflon® PFA

 Image: Stability
 Image: Stability

 Image: Stability
 Image: Stability
<

PFA Grade	Melting Point (°C)	Melt Flow Rate (g/10 min)	Flex Life (Cycles)	Tensile Strength (MPa)	Elongation (%)
TEST METHOD	ASTM D 4591	ASTM D 1238	ASTM D 2176	ASTM D 3307	ASTM D 3307
PFA 8015HS	310	13	60000	25	300
PFA 8025HS	310	25	10000	25	275

Fluonox[®] FKM

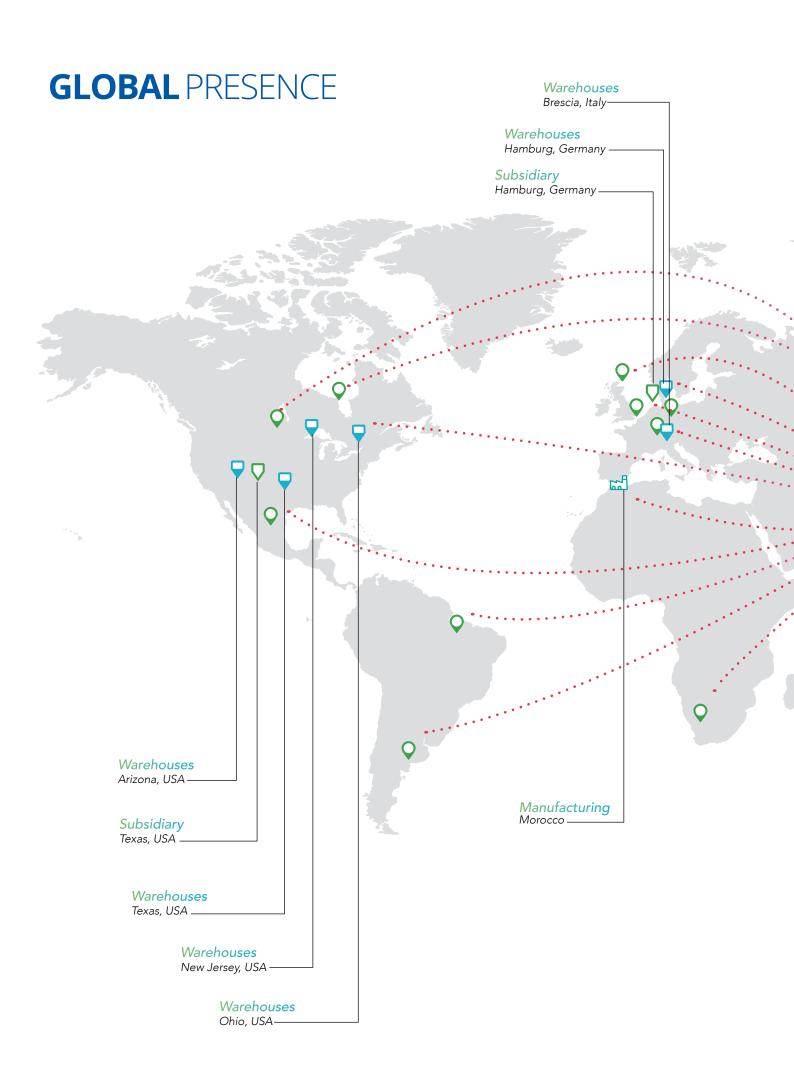
Fluonox[®] FKM offers long-term durability, and chemical and electrochemical resistance under high temperatures and becomes an ideal choice of materials for cell gaskets, static & dynamic seals, and coolant transmission hoses in Li-ion battery systems. These FKM materials provide Li-lon battery manufacturers with effective component design flexibility to help extend battery life and improve battery processing safety.

The other salient features of FKM include the following:

Excellent chemical and thermal resistance	Outstanding compression	Excellent permeation	Outstanding
	set resistance	resistance	weatherability

Press cure 10 min at 170°C (338F); Post cure 4 hours at 230°C (446F)

(-rado	Mooney Viscosity MI (1+10)' at 121°C		100% Modulus MPa	Tensile Strength MPa	Elongation at Break %	Shore A Hardness
TEST METHOD	ASTM D 1646	Internal NMR method	ASTM D 412	ASTM D 412	ASTM D 412	ASTM D 2240
KR 520P	20	70.6	10	20	210	76 points


Compression Set: 70 hours at 200°C (392°F)

Properties	Value Unit %	Method
Compression Set	17	ASTM D395 Method B

CATHODE ACTIVE MATERIAL (CAM)

Lithium Iron Phosphate (LFP) Product Specifications

Properties	Reference	UOM	Process Capability
Appearance	Physical appearance of output material		Black powder, No lump
Specific Area	Specific Surface area SSA	m²/gm	8 - 1.5
	Particle size D10	μm	> = 0.41
Particle Size	Particle size D50	μm	0.6-2.1
	Particle size D100	μm	< = 10
	Density - Tap	g/cm ³	0.8 - 0.9
Density	Density - Compact	g/cm ³	2.3 - 2.4
	Carbon(C)	%	1.0 - 1.85
Elemental	Iron (Fe)	%	33.6 - 35.6
Composition	Phosphorous (F)	%	18.5 - 20.5
	Lithium (Li)	%	4.2 - 4.6
Others	pH of 5% Dispersion in water		8 -10
	Calcium (Ca)	ppm	20
	Sodium (Na)	ppm	150
	Potassium (K)	ppm	50
Impurities	Magnesium (Mg)	ppm	50
	Copper (Cu)	ppm	5
	Moisture	ppm	< = 300
	Magnetic material	ppb	< 200
Performance cha	racteristics @ 25°C		
	Initial specific discharge capacity @ 0.1C	mAh/G	> = 160
	Initial Coloumbic efficiency	%	97
Charge Discharge Characteristics	Specific capacity @ Charge/Discharge 0.5C/0.5C	mAh/G	141
	Specific capacity @ Charge/Discharge 1C/1C	mAh/G	135
	Specific capacity @ Charge/Discharge 1C/2C	mAh/G	130
	Specific capacity @ Charge/Discharge 1C/5C	mAh/G	96
	Capacity Retention after 2000 Cycles @ 1C/1C	mAh/G	92
Capacity Retention	Capacity Retention after 2000 Cycles @ 45 deg C @ 1C/1C	mAh/G	83
	No. of Cycles with 100% Depth of Discharge	Cycles	10000 - 11500

♥ Warehouses

Gujarat, India Texas, USA New Jersey, USA Arizona, USA Ohio, USA Hamburg, Germany Brescia, Italy

♀ Corporate HQ

Noida, India

∇ Subsidiary

Hamburg, Germany Texas, USA

🖾 Manufacturing

Dahej, Gujarat, India Ranjitnagar, Gujarat, India Morocco

Q Sales & Distribution

Americas: Michigan, Philadelphia, Atlanta, New Jersey, Mexico, Brazil and Argentina

EU: Italy and Germany

ROW: India, South Africa, Thailand, China, Korea, Taiwan, and Japan

CORPORATE HQ

GUJARAT FLUOROCHEMICALS LIMITED | GFCL EV PRODUCTS LIMITED

INOXGFL TOWERS,17, SECTOR-16A, NOIDA-201301 U.P, INDIA | +91-120-6149600 | WWW.GFL.CO.IN | E : INFO@GFL.CO.IN

WORKS

PLOT NO D-2/CH/173 & 222, VILLAGE – JOLVA, GIDC INDUSTRIAL ESTATE, DAHEJ II, DAHEJ, DISTT - BHARUCH, GUJARAT, INDIA CONTACT@GFCLEV.CO.IN | WWW.GFCLEV.CO.IN

This document and its contents are confidential and proprietary to the GFCL EV PRODUCTS LIMITED, and no part of it or its subject matter may be reproduced, redistributed, passed on, or the contents otherwise divulged, directly or indirectly, to any other person (excluding the relevant person's professional advisers) or published in whole or in part for any purpose without the prior written consent of the Company. If this document has been received in error it must be returned immediately to the Company. GFCL EV PRODUCTS LIMITED

